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Abstract— A constitutive model applicable to brittle materials such as ceramics subjected to biaxial
compressive loading is developed. The model is based on non-interacting sliding microcracks that
are uniformly distributed in the material. Tension cracks nucleate and propagate from the tip of the
sliding cracks in the direction of maximum applied compression when the stress-intensity factor
reaches its critical value. For high strain rate deformation, the rate of crack growth is governed by
a universal relation in dynamic fracture. The constitutive model provides strain components for
plane deformation which consists of an elastic part and a part due to sliding and growth of the
tension cracks. The failure of the material is linked to a critical density of damage and hence a
critical length for the tension cracks. The constitutive model is used to study material behavior
under uniaxial compressive constant strain rate loading. A critical strain rate beyond which the
material would exhibit rate sensitivity is proposed. The model predicts the failure or peak strength
to increase with increasing strain rate. For engineering ceramics, the rate sensitivity exponent is
found to be a function of the relation between the rate of crack growth and the toughness of the
material. The model predictions are compared with the rate-dependent behavior of a hot pressed
aluminum nitride tested in uniaxial compression in the strain rate range of 5 x 107°-2x 10 s~ ".

I. INTRODUCTION

Brittle materials such as monolithic ceramics and ceramic composites are finding increasing
applications and there 1s a need to design them for resistance to impact loading. An
understanding of damage evolution under dynamic loading conditions is important in the
analysis of structures made of brittle materials. In the absence of lateral confinement, failure
of ceramics and ceramic composites under compression occurs at strains on the order of 1-
2%. It has been observed that ultimate failure strength (impact or peak strength) of ceramics
is rate sensitive in uniaxial compression; see for example, Lankford (1981) and Subhash
and Ravichandran (1993). Past investigations have shown that damage in the form of
microcracking and/or microplasticity plays an important role in deformation and failure
of ceramics and ceramic composites at stresses even below the Hugoniot elastic limit (HEL)
under dynamic loading conditions ; see Lankford (1977, 1981), Longy and Cagnoux (1989),
Ramesh and Ravichandran (1990). Ravichandran and Chen (1991), Raiser and Clifton
(1993), Subhash and Nemat-Nasser (1993) and Subhash and Ravichandran (1993). Rocks
and minerals also undergo damage in the form of microcracking under compressive and
tensile pulse loading; for example, see Grady (1977) and Rubin and Ahrens (1991). A
dominant micromechanism that commonly characterizes damage in brittle or quasi-brittle
materials is microcracking which may nucleate either at inhomogeneities such as inclusions
and reinforcements or at defects such as microcracks and pores. In the present study, we
develop an analytical model for damage evolution in brittle solids under high strain rate
loading and provide a quantitative understanding for the observed rate sensitivity in
ceramics under compressive loading conditions.

A brief review of compressive failure in ceramic materials is presented in Section 2 and
the possible micromechanisms responsible for damage are outlined. In Section 3, theory
for damage evolution under biaxial compressive loading is presented. The modeling is based
on a shding crack model proposed by Brace and Bombolakis (1963) and subsequently
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analyzed in detail by Nemat-Nasser and Horii (1982). Results from this model are used to
formulate a constitutive relation on a macroscopic level using the Clapeyron relation. A
brief review of the crack growth criteria is also presented in this section. In Section 4, a
dynamic crack growth criterion is used to model the response of brittle solids under constant
strain rate loading. This corresponds to the condition experienced by a specimen when
subjected to uniaxial compressive loading in a split Hopkinson (Kolsky) pressure bar. The
predictions are correlated with the observed high strain rate behavior of a hot pressed
aluminum nitride (Subhash and Ravichandran, 1993). The physical significance of model
parameters and their implications for failure of ceramics are critically examined. Improve-
ments for the model are suggested and conclusions for the current study are presented in
Section 3.

2. COMPRESSIVE FAILURE OF CERAMICS

In brittle materials such as rocks, minerals, ceramics and composites, the damage
evolution under applied compressive loading is intimately related to microcracking at
defects such as pores, inclusions, second phase particles, twin/grain boundary intersections
and triple point grain boundary junctions; see for example, Lankford (1977). The com-
pressive strength of ceramic materials has been found to be rate sensitive and the possible
mechanisms for this observed rate sensitivity have been discussed by Lankford (1981). It
was observed that certain ceramic materials are weakly rate sensitive (hot pressed Al,O5)
and others are rate insensitive (sintered «-SiC) below a certain critical strain rate, which is
typically on the order of 1000 s~'. Above this critical strain rate, it is observed that most
ceramic materials exhibit a strong strain rate sensitivity. Compressive failure involves
nucleation of tensile microcracks from inhomogeneities or flaws which eventually coalesce
and cause axial splitting. However, the mechanisms and thermal activation of these pro-
cesses vary and could be functions of strain rate. Below the critical strain rate, in hot pressed
AlLLO; and sintered «-SiC, it has been found that while the microcracks nucleate athermally,
their growth process is thermally activated and is a function of the material properties.

In hot pressed ceramics, the tensile cracks can nucleate and grow in a stable manner
below the critical strain rate. This could be due to mismatches in elastic compliance between
adjacent grains and from the inherently present processing flaws such as the ones at the
twin/grain boundary intersections. In such materials, it has been speculated that the strain
rate exponent is closely related to the characteristics of the sub-critical crack growth (Ki—v
relation) ; see, for example, Evans (1972). The sub-critical crack growth has also been cited
as the reason for observed rate sensitivity of tensile failure in the quasi-static strain rate
regime. On the other hand, sintered ceramics are relatively insensitive in their failure
strength below the critical strain rate. Stable sub-critical crack growth is not generally
found in sintered materials where the initial flaws are typically sharp cornered pores
(Lankford, 1977). In such cases, the cracks nucleate athermally and the coalescence occurs
instantaneously without any sub-critical crack growth.

Above the critical strain rate, it is found that most ceramic materials, either hot
pressed or sintered (irrespective of the processing conditions), exhibit strongly rate sensitive
behavior. It has also been found (Lankford, 1981) that the strain rate sensitivity exponent
is nearly the same for all ceramics, 0.27 for AlL,O, and 0.263 for «-SiC. This has been
attributed to the inertia-dominated dynamic crack growth from pre-existing flaws. The
crack initiation has been considered to be athermal and once the crack initiates, the rate
controlling process is considered to be inertia which is suggested to be independent of
material properties. Based on arguments concerning the inertial effects on initiation and
propagation of cracks, Grady and Lipkin (1980) showed that the strain rate sensitivity
exponent is 1/3 and that this exponent is independent of material properties and thermal
activation. It was noted by Lankford (1981) that extrapolating to higher strain rates (shock
wave data) using this exponent could possibly explain the high HEL observed for ceramics.
The data on hot pressed aluminum nitride (Subhash and Ravichandran, 1993) show that
it is weakly rate sensitive in the low strain rate regime and strongly rate sensitive above

strain rates of approximately 1000 s '
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From a mechanics point of view, the situation in hot pressed ceramics is closely related
to the problem of sliding microcracks nucleating tensile wing cracks upon reaching a
critical stress intensity factor K. and then growing in a stable manner in the direction of
compression ; for example, see Horii and Nemat-Nasser (1986) and Ashby and Hallam
(1986). On the other hand, the observations for sintered ceramics can be modeled in terms
of cracks nucleating from defects such as pores due to local tension and the subsequent
crack growth and coalescence in the direction of applied compression; see Sammis and
Ashby (1986). Also, the reason for lack of stable sub-critical crack growth in sintered
materials can be understood in terms of their processing and crack initiation process. It has
been noted by Lange (1983) that in sintered ceramics, the thermal gradients during sintering
could result locally in larger size flaws. Also, the presence of sintering additives in ceramics
could result in additional nucleation sites such as low aspect pores at triple junctions and
quasi-brittle glassy phases at grain boundaries. If the initiation flaws are low aspect ratio
pores, the material has the ability to store large amounts elastic energy, and hence once the
flaw initiates at higher stress intensity factor (K;) (values exceeding K, ), then the cracks
would propagate in an unstable manner. The problem of crack initiation and dynamic
propagation from flaws with stress concentrations has been examined by Freund (1977,
1990). The presence of larger flaws in sintered ceramics as observed by Lange (1983) would
also promote catastrophic failure upon initiation. These observations would explain the
rate insensitivity of sintered materials below the critical strain rate since they will not be
able to sustain stable crack growth. During processing of hot pressed ceramics, the lack of
sintering additives and thermal gradients, and prevailing high pressures, promote good
bonding at particle boundaries, lower porosity and smaller pores; see Lange (1983). The
presence of small microflaws would result in sliding upon reaching the critical stress intensity
factor at the crack tip and could grow in a stable manner as has been suggested by Nemat-
Nasser and Horii (1982) and Ashby and Hallam (1986). In the following section, we will
examine the implications of these observations both at quasi-static and high strain rates.

3. DAMAGE EVOLUTION

3.1. Sliding crack model for tensile cracking under overall compression

A material element subjected to overall compressive loading is assumed to contain
distributed pre-existing microcracks as shown in Fig. 1(a), and the tension cracks are
nucleated at the tips of individual microcracks as shown in Fig. 1(b). The problem of crack
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Fig. 1. (a) A schematic of a material element with distributed microcracks subjected to far-field
biaxial compression and (b) sliding crack model for individual microcracks.
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Fig. 2. An idealized unit cell model for sliding crack under applied biaxial compression.

growth under compression has been analyzed extensively by Nemat-Nasser and Horii
(1982), Horii and Nemat-Nasser (1986), Ashby and Hallam (1986) and Ashby and Sammis
(1990). Earlier analyses of the problem include the ones by McClintock and Walsh (1963)
and Moss and Gupta (1982). The tension cracks (wings) are assumed to nucleate and grow
so as to maximize the mode I stress intensity factor, K;. The cracks are assumed to be
dilutely distributed and randomly oriented in the material. The unit cell model problem
used in the present study of local tension-induced microcracking in brittle solids is shown
in Fig. 2 where the cracks grow in the direction of maximum applied compression. Under
overall compressive loading, the failure mode depends on the relative magnitude of the
principal stresses. In tension, a single dominant flaw grows in an unstable manner and
causes catastrophic failure, while in compression a number of microcracks can grow in a
stable manner under increasing loads until they interact, coalesce and cause eventual failure.

The pre-existing microcracks are assumed to be of initial length 2¢ and the length of
each sigmoidal tension crack is assumed to be /. To simplify the problem, we have replaced
the curved wing cracks by straight cracks, i.e. ¢ = 0 [see Fig. 1(b)], as has been suggested
by Ashby and Hallam (1986). This assumption is reasonable since the tensile wing grows
to several times the original length of the original sliding crack, i.e. /> ¢ and the crack
curves only in the initial stages when / < ¢ which then eventually propagates in the direction
of maximum applied compression ; also see Vekinis et al. (1991). The mode I and mode II
stress intensity factors K; and K|, at the tip of each of the tension cracks shown in Fig. 2
under biaxial compressive loading are given by

Der* P , —2ct*sin 6
K= CS0 o ) and Ky = eS0T (la.b)
VI +1,0] VIrU+1]

where t* is the shear stress on the pre-existing microcrack that causes sliding,

™ =1(g,—0,)sin20—1, )
where

rt-=%17[(0'1+03)+(Jl—62)00529]. (3)

The first term in eqn (2) is the resolved shear stress on the crack faces that provides
the driving force for sliding and propagation of the tensile cracks. The second term t; is the
shear traction on the crack faces due to the normal traction caused by the external loading
g, and o, applied in the x, and x, directions, respectively. In our analysis, the compressive
stress components are assumed to be positive. The frictional shear stress 7, on the microcrack
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resists sliding. # is the coefficient of friction. The frictional stresses are assumed to be
uniform across the faces of the sliding crack. The crack length /, has been introduced so
that when the length of tension crack is extremely small, the stress intensity factors are
accurately given by eqn (1). /, has been estimated (Horii and Nemat-Nasser, 1986) to be
0.27¢. Several other microcrack-induced failures of materials under compression have been
proposed, e.g. by Kachanov (1982), Costin (1983, 1987), Ortiz (1985), Krajcinovic (1989)
and Myer et al. (1992). Most of the above-mentioned models deal with quasi-static failure
of brittle materials under compressive loading. Recent investigations by Deng and Nemat-
Nasser (1993) and Nemat-Nasser and Deng (1994) deal with damage evolution under
dynamic compressive loading conditions and their implications on rate dependence of
brittle materials.
The virtual energy release rate G is given by,

_ DI+

¢ 4E

(Kt +K7), 4)

where k =(3—v)/(1 +v) for plane stress and x = (3 —4v) for plane strain. Hence,

(kD1 4v) [4e (1%)? N L
G(l) = iE |:7r(l+l*) + 03l —4ct*o, cos 0\/<(l+l*)>]’ (5

where E and v are the uniaxial Young’s modulus and Poisson’s ratio, respectively.

3.2. Quasi-static compressive strength
The sliding crack models predict that the initiation stress for crack advance in biaxial
compression is given by (Nemat-Nasser and Horii, 1982 ; Ashby and Hallam, 1986),

1477 3 K,
a _[( +7’]) +'1]O_ + \/ Ic

= — 6
L) =T LA+ =) (me) ©

Equation (6) highlights the parameters that influence the compressive strength of
brittle materials such as ceramics. Smaller initial flaw size (microcrack) and higher fracture
toughness (critical stress intensity factor, K,.) would mean higher compressive strength for
the material. For uniaxial compressive loading, eqn (6) can be written as (Ashby and
Sammis, 1990),

\/3 K]c
RV S ™
O T ) g Jmo)

where o, is viewed as the quasi-static compressive strength (at extremely low strain rates)
of the material under uniaxial compression. The fracture toughness K. is a material property
that has been determined from independent measurements, c is the average initial flaw size
(related to processing) from which the tension cracks nucleate and #, the coefficient of
friction, can either be measured or could be obtained from fitting parameters to the
experimental data. In situ observations in ceramics by Vekinis et al. (1991) suggest that
when the axial stress exceeds oy, these nucleated cracks grow parallel to the compression
axis in a stable manner, and avoid each other until ultimately they coalesce, causing failure.

3.3. Constitutive behavior

The constitutive behavior of brittle materials subjected to compressive loading has
been studied by Moss and Gupta (1982), Nemat-Nasser and Obata (1988) and Myer et al.
(1992) under quasi-static loading conditions, and under stress pulse loading by Deng and
Nemat-Nasser (1993). In the two-dimensional principal axis setting (see Figs 1 and 2) the
stress ¢ and strain ¢ tensors are represented by the following 2 x 1 arrays,
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0, &1
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The total strain tensor g can be represented by an additive split,
e =¢&+g, 9)

where ¢ is the strain tensor associated with the solid prior to damage accumulation and is
related to the stress tensor ¢ through the compliance tensor D,

& = Deo. (10)

The compliance tensor D can be written in two dimensions as a 2 x 2 matrix,

| K—3

(k+D(1+v) K+1
T 4E K—3
K+ 1

D (1)

In the case of plane strain & = 0 and in the case of plane stress, g; = 0. For plane stress,
= v
& = ‘E(Ul+0'2)~ (12)

The elastic part of the volumetric strain ¢ is given by,

_(1=2v)
- 3E

(0N (0,4+0,4+03). (13)

&' is the damage strain for the material element under consideration due to the presence
of initial microcracks and the subsequent growth of sigmoidal tensile cracks. The damage
strain tensor has been evaluated by Nemat-Nasser and Obata (1988) by making use of the
cavity strain approach for individual microcracks and summing them over all possible
orientations. In our present modeling we adopt the energy approach suggested by Palmer
and Rice (1973). In this approach, we make use of the global energy balance to evaluate
the additional strains induced by the tensile cracks and sliding of the microcrack. We utilize
the Clapeyron relation,

20U, = W, — W, (14)

where U, is the elastic strain energy dissipated by the growth of the tensile cracks, W, is the
increase in elastic strain energy of the body due to the introduction of the crack and W, is
the frictional dissipation due to the sliding of the crack surfaces. The strain energy dissipated
at each crack tip can be evaluated by making use of the well-known relation,

U,
AN

(15)

where U, is the strain energy associated with each crack tip, / is the crack length and P is
used to denote fixed load conditions. By integrating G in eqn (5) with respect to the crack
length / while holding the applied loads constant, i.e. the far field stress components ¢, and
g,, we obtain, U, (equal to 2U,, since there are two crack tips),
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For our modeling purposes, we assume that the initial state is characterized by the
solid with initial microcracks under biaxial loading and the constitutive relation is given by
eqn (10). The strain due to damage is assumed solely due to the sliding of the microcracks
and the growth of tensile wing cracks. The global strain increments due to damage is
computed using the Clapeyron relation (14). The strain increments in ¢, and ¢, due to each
crack are denoted by Ag, and Ae,. The total sliding displacement on the crack faces is given
by ¢ and is normalized by the initial microcrack length 2c. Based on the linearity of the
problem under consideration, the strain increments Ag, and Ag, are assumed to be linearly
dependent on the biaxial stress components ¢, and o5,

<A81)_ S S, 0'1) 17)
Ae, So San 172w

where S, are constants. From the symmetry of the modulus tensor, we have §,, = S,.
Under fixed loading conditions, the work W, done by the applied loads, i.e. ¢, and ¢,, on
the additional displacements is

Wl =4\1r'/’l(O'[A5|+O'2A£2), (18)
and the frictional dissipation W, can be written as,
W|‘ = 2("(“(5, (19)

where 4wh is the area of the unit cell in which the crack is present (see Fig. 2) and 4 is the
sliding displacement along the crack faces. The sliding displacement é is computed from
the stress intensity factor at the tension crack tip due to sliding Kj (Nemat-Nasser and
Obata, 1988),

2F ) cos l
. | dcosd o, /(nl) (20)
(k+DH(1+v) V24 Lies)] \/ 2

where /,, = 0.083¢ which assures the correct value for the stress intensity factor as the
length of the tension crack / becomes vanishingly small in eqn (20). The stress intensity due
to sliding should be the same as the one due to the applied loading given by eqn (1a). The
sliding displacement is written in terms of the stress intensity factor K, and hence the applied
biaxial loading components by equating eqns (1a) and (20). The sliding displacement § can
be written as

5= .C(K+ 1/)(] V) {21* (,/ (ﬁ’lﬁ)_ ((\”/,2)— 1)_03 @ }/ (L <1 + i))} (1)
WDE VANERS (2)cos ¢ N Lex Lyx

The work done by the applied loads on the additional displacements due to the growth of
the tensile wing crack, W, [see eqn (18)] and the frictional dissipation, W [see eqn (19)] can
now be written as
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W :‘4Wh(5110'?+3220'§+2S12‘71‘72)’ (22)
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By making use of the Clapeyron relation (14) and eqn (22) and (23), we can solve for
the constants S,,, S,, and S, in eqn (22), by comparing the coefficients of the quadratic
terms,

4 (k+ 1)1 +v) ((sinf—ncosb)? cos* b !
Sn= FA. { . ln(1+a>
n(sin@—ncos0)cos® O [[I+ 1y
24
+ 7~ i1, ) (24a)
4c?(k+ (1 +v) ((cos@+nsin ) sin’ 6 ! nl
(0050+nsm0)sm29 Iy I j_+ l+i
c 1* l*
n(cos()+ﬂsm0)sm 0 (14 1es ((\/2)—1)nsm0tan6
NG )
X 1+ , 24b
( ¢ Lex Lyx (245)
o _ 4G4y ([(1—n})sin20—2ncos20)sin26, (1
12 = EA. 4r LA

ttasm 0] (1o, ) (L ()]

N n(cos20+nsin20)sin20 | /141 ((/2)—1)ncosé
4,/2 I+1, 8

)

where A, is the area of the unit cell which in our case is 4wh (see Fig. 2). The strain
increments which are of interest to us, namely Ag, and Ag, due to the sliding and growth of
a single crack, can now be evaluated using eqns (17) and (24a—). The out of plane strain
increment Ae; due to crack sliding and growth is zero for two-dimensional problems. The
incremental volumetric strain A® due to crack growth and sliding for a single crack is given
by,
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AO = Ag, +Ae,. (25)

Assuming no interaction between the cracks, i.e. they are thinly distributed, the overall
damage strain tensor ¢ [see eqn (9)] can be written for the distribution of microcracks N(6)
in the solid as

g(0) = j N(0)Ae, dO, o =12, (26)
(

),
S

In the above integral, note that the lower limit is 6, which is defined such that t* < 0 for
6 < 6,and * > 0 for 6 > 6,. The angle ¢, can be determined from solving eqn (3) by setting
* = 0. The angle 0, has been introduced to account for the fact that the initial microcracks
with orientations 8 < 6, will remain closed and will not undergo sliding or growth since
* < 0 and thus do not contribute to the overall strain due to damage accumulation. The
pre-existing microcracks are assumed to be randomly oriented which implies N(6) = 2N/x,
where N is the total number of pre-existing microcracks in the solid. The strain components
due to cumulative damage are given by

¢ d ¢
& = 81 a T by L
te=at (m—286,)

J As,(0) d6. 27)

0,

The integral in eqn (27) can be evaluated explicitly by integrating expressions for S,; in eqn
(24) with respect to 8. The areal density of initial microcracks is defined by the parameter
Jfo which is related to the initial flaw size ¢ and N, the number of microcracks per unit area,

fo = Nc . (28)

The constitutive model can now be constructed using eqns (10)-(13) and (26)—(28) for
brittle microcracking solids subjected to biaxial compressive loading.

3.4, Uniaxial stress deformation

For uniaxial compressive loading, 1.e. o, = ¢ and g, = 0, the state of deformation is
assumed to be in plane stress, i.e. g; = 0. The critical sliding angle 8, can be written as [see
eqn (3)]

6, = arctan(y), (29)

and note that 0 < 6, < n/4 for the coefficients of friction in the range 0 < < 1. The
expressions for the average shear stress on each crack, the stress intensity factors and the
energy release rate at each of the tensile crack tips is obtained by integrating over all
possible orientations for the sliding cracks, i.e. 0, < 0 < n/2.

o = 277:26‘—)[1 +c08 20, — (1 —20,) + 5 5in 26,)], (30)

K ———4-(_0-__ / __]”—_ 39 2 3 0 ) 39}) (31
1_3(75—29&)\/ 2l +1y) (cos’ 0, ~n{2—3sin Y, +sin" 6} ) a)

and

P L Y ¥ 31b
e 3(”‘29.\-)\/ n(l+1y) (I=sin” 6, —ncos” b,) (31b)
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G 1 0% {2(n—20,)(1+3n*) + (1 —n*) sin 460, — 165 cos® 0, —8x” sin 26, }
E 4n—20)n(I41y) '

(32)

Now the constitutive relations reduce to the following form for uniaxial stress:
ag g l ’ l+[**
‘ —E-f—Efo{pl 1n(1+z>+p2\/(1+1* )} (33a)
Y dam (1 Dra (M) (L4 L
2 = E Efo 4, n I, q: c I, I,
[l [ ) [+ 1ex Tl sene / {
— — — — — — — 33b
S I G e M ) e

Vo
- . 33
&3 (33¢)

™
")
!

All other strain components are zero. The constants p,, p., ¢, ¢, g5 and q, are
functions of the friction coefficient # and are given in the Appendix. The volumetric strain
O is given by,

O =¢ +&+s;. (34)

Since we are interested in predicting the failure or the critical strength o, of the material
in uniaxial compression, with g, = ¢, we can rewrite eqn (33a) as

o= E €. (35)

! 141,y
{] +/op) In (E +])+fopz\/( ;:_1* >}

Equation (35) can also be expressed in the familiar form ¢ = Eg, where E is the
“effective modulus” [e.g. Budiansky and O’Connell (1976)] for a microcracking solid under
uniaxial compression and 1s related to the modulus E of the undamaged material by,

E , [ 41 \) !
Ez {1+_f<)1711n (l,k+l>+f0p2\/<l+l* )} . (36)

The first term in eqn (36) with coefficient p, corresponds to the change in the moduli
due to axial crack growth, and the second term with coefficient p, corresponds to the change
in moduli due to the sliding of microcracks. In general the first term is positive, resulting
in degradation of the moduli, and the second term in general is negative, resulting in
enhancing the moduli. However, the coefficient p, is an order of magnitude larger than the
coefficient p, (see the Appendix) and the quantity within the square root in the second term
is of the order unity for any appreciable crack growth. In general, for engineering ceramics,
there is no degradation in elastic moduli due to crack growth and sliding, and hence
macroscopically the response would nearly be that of a perfectly linearly elastic solid. These
comments also apply to the axial stress versus transverse strain response of the solid. Hence,
the volumetric strain ® (34) is primarily due to the elastic compressibility (13) of the
material rather than dilatancy introduced by the sliding and the growth of microcracks.
Equations (33a—¢) provide the stress—strain relations for a microcracking solid under far-
field applied uniaxial compression in terms of the applied stress ¢ and the average crack
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length /. In order to obtain the constitutive behavior of a material, knowledge of the crack
growth is required.

3.5. Crack growth criteriu

The most commonly used fracture criterion for brittle solids such as ceramics under
quasi-static conditions is the constant stress-intensity factor criterion which is formally
written as

K(l) = K. (37)

Under quasi-static conditions this is equivalent to assuming the Griffith or constant energy
release rate criterion. i.e. G = 2y, where 7 is the surface energy of the solid per unit area.
However, if the crack growth rates were to become appreciable relative to the Rayleigh
wave speed ¢y in the material, then this equivalence is not valid. For linearly elastic solids,
the Rayleigh wave speed ¢y is the theoretical limit of crack propagation speed; see, for
example, Freund (1990).

Evans (1972) and others have observed stable crack growth in ceramic materials under
quasi-static loading conditions. They have proposed the following power law relationship
for the crack growth velocity. .

r = AK?, (38)

where A is a material constant and » is an exponent which is around 50 for hot pressed
ceramics. This provides yet another criterion for crack growth in ceramics. For quasi-static
deformation, eqns (37) and (38) appear to be the most appropriate crack growth criteria.

At high loading rates, the crack growth rates become appreciable and we need to apply
the concepts of dynamic fracture mechanics. There are varied fracture criteria which are
used to study dynamic failure of brittle solids. For an excellent review of these criteria, see
Freund (1990). We briefly discuss some of the most commonly used criteria for brittle
solids ; see, for example, Ravichandran and Clifton (1989).

For dynamic crack growth. the stress intensity factor of a growing crack can be related

to the crack velocity,
Ky v e\
——x [l ——}[1—— . (39)
K}j(/. t) Cr Cq

where K is the stress intensity factor for the stationary crack with current length / and ¢,
is the dilatational (longitudinal) wave speed in the material.

The energy release rate of a dynamically growing crack can also be related to its
velocity.

. U
T 40
G(L. 1) x =0

where G, is the energy release rate required for sustaining crack propagation and G%(/, 1) is
the virtual energy release rate for the stationary crack of current length /.
The relationship between the crack speed and applied loading can be written in the

following general form,
G. Y
L <1—i), (41)
G U

where y is a fitting parameter which characterizes the toughness—crack velocity relation and
U 18 the maximum terminal velocity for a dynamically propagating crack. This form is




2638 G. Ravichandran and G. Subhash

particularly useful in fitting experimental data, and in most materials the maximum speed
for crack propagation has been observed to be only of the order of 0.3-0.5 of the Rayleigh
wave speed ¢g. For y = 1 and v, = cx eqn (41) reduces to the special case of the constant
energy release rate criterion given by eqn (40).

The right-hand sides of eqns (39) and (40) are universal functions of crack speed » and
are independent of the loading ; see Freund (1990). The choice of a particular criterion for
crack growth is based on observed material behavior. The uniqueness of the K—v relation-
ship for rapid crack propagation has been discussed in detail by Dally er al. (1985).
Relatively little is known regarding the dynamic fracture characteristics of brittle materials
such as ceramics ; see Dufty er al. (1988, 1989), Yang and Kobayashi (1990), Suresh et al.
(1990) and Deobald and Kobayashi (1992). However, there is evidence that the dynamic
fracture toughness of a dynamically growing crack in monolithic ceramics may be decreasing
with increasing velocity ; see Kobayashi et al. (1983) and Yang and Kobayashi (1990). For
modeling purposes, we assume the following relation for the energy release rate G, for
propagation

G. .
G =haD, (42)

where /1 is a function to be fitted from experimental data and G, is the critical energy release
rate at initiation.

3.6. Failure criteria

A physically acceptable failure criterion for which the material element loses its capa-
bility to carry or transmit loads is when the damage reaches a critical value f.. The critical
density of damage /. is expressed as [see eqn (28)]

fo=NE, (43)

where /. is a critical length for the tension crack when the coalescence occurs with neigh-
boring tension cracks.

4. CONSTITUTIVE MODELING

We illustrate the application of the constitutive model developed for plane stress in
the previous section for constant strain rate deformation under uniaxial compressive load-
ing. This can then be used to model the experimental data obtained from split Hopkinson
(Kolsky) pressure bar experiments.

4.1. Constant strain rate deformation
When a material element is subjected to a constant strain rate &,, the strain ¢ can be
written as.

&= &l (44)

and stress ¢ in the material element can be expressed as a function of the reduced modulus
F [see eqn (36)],

o = Eé,t. (45)

The microcracks are assumed to initiate when the far-field applied compressive stress
reaches the quasi-static compressive strength g, which is assumed to be athermal (see
Section 2). In other words, when the applied stress level reaches the quasi-static compressive
strength then the crack-tip stress intensity factor attains its critical value K, which is
assumed to be rate independent and athermal in the present study.
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The following non-dimensional variables for stress X, time T and length L are used:
2 = U([)J’/G(,, T = lllit() and L = 1//10, (46)

where stress ¢ is normalized with respect to the quasi-static compressive strength o, time
t is normalized with respect to f, and crack length / is normalized with respect to a
characteristic length /, = v,,1,. {, is the time taken from time 7 = 0 for the material element
to reach the stress level o, which can be determined from eqn (45).

Making use of eqns (36) and (45), the stress in the material element can be written as,

T 4p./(1—y)]
l X
<1 +p ln(a + l)+p3\/<l — (1,’/!*)+ 1))

where y 1s a constant given by (/4 — /4 4)/{x (see Section 3). Using eqn (47) and the fracture
criteria discussed in Section 3.5, one can study the effect of strain rate on the deformation
and failure response of a material.

2(T.L) =

(47)

4.2. High strain rate behavior
Using eqns (41), (42) and (45), the relationship between the crack speed and the applied
loading can be written in the form

I df AN
L; d[_ 1—h (O’> <(> . (48)

Equation (48) is an ordinary differential equation which relates the crack growth rate to
the applied loading. This equation can be integrated to obtain crack length as a function
of the applied stress a. Inspection of eqn (48) suggests that the crack would cease to grow
unless /2 is a monotonically decreasing function of the crack length /. Motivated by the
limited experimental data available (Kobayashi ef al., 1983 ; Yang and Kobayashi, 1990)
on ceramics, the following form for the function /4 is postulated :

h(l ]y = (‘[)+ (}) (49)

Making use of equs (47)—(49), the equation of motion for a growing microcrack in a
material element subjected to constant strain rate uniaxial compressive loading can be
written as

! / % .
il | 27<|+[71IH(Z+1)+,D2\/<I-—(7/;[*)+1>> .
(d-> _ 1_(~) LD (50)

T T [1+p,/(1—1)]*"

Equation (50) is integrated numerically using the fourth-order Runge—Kutta method with
the initial condition, L = 0 at 7 = 1, to obtain the crack length / as a function of time 7.
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F4(T,n)

r T
1 1.1 1.2 1.3 14 15 1.6 17 18 1.9 2
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Fig. 3. Plot of the dynamic crack growth function Fy(7,y) versus normalized time 7 for y = 0.05,
0.25,0.5, 1.0, 1.5 and 5 for initial microcrack density f; = 10~ and coefficient of friction # = 0.6.

The integral of the right-hand side, F, is plotted against the normalized time T in Fig. 3
for different values of y and for # = 0.6 and f, = 107" (0.1% porosity), which are typical
values for engineering ceramics. The relation between crack length / and this universal
function F, can be written as

lg—’) = Fy(T,7). (5D

The dynamic fracture toughness K 4 is plotted as a function of the crack velocity v for
y = 1 in Fig. 4. The dynamic fracture toughness is normalized with respect to the initiation
toughness K. and the velocity is normalized with respect to the terminal velocity v,,. The K-
vrelation is a monotonically decreasing function which has been observed experimentally in
brittle material systems.

The function F; on the left-hand side in eqn (51) can be evaluated for a given set of
uniaxial compression experiments at failure by invoking the failure criterion eqn (43), i.e.
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Fig. 4. Normalized dynamic fracture toughness (K,./K;.) as a function of normalized crack velocity
(v/vy,) fory = 1.
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Fig. 5. Compressive strength versus strain rate of a brittle microcracking solid for toughening
parameters ; = 0.05,0.5. 1.5 and § for initial microcrack density f, = 10~* and coefficient of friction
n=20.6.

failure occurs when the average crack length / reaches its critical length /. and the cor-
responding failure time is denoted by ¢,

/ t
E=F(5,7) 52)
A d(to r) (

Knowing the failure time ¢, and the corresponding #,, one can predict the failure
strength using eqn (45) [6.( = Eéyt.)] of the material for different strain rates. Our present
analysis indicates that the most important factor that governs the rate-dependent behavior
of ceramics appears to be the dynamic crack growth behavior in them. By making use of
eqns (47) and (52) and assuming /./v,, = 2 us and quasi-static failure strain to be 0.01,
normalized compressive strength is plotted in Fig. 5 as a function of strain rate for y = 0.05,
0.5, 1.5 and 5 with f, = 107 and n = 0.6. It is interesting to note that the material with
higher y becomes highly rate sensitive at lower strain rates than for smaller values of 7. It
has been observed that for engineering ceramics, the material is strongly rate sensitive
beyond a critical strain rate (Lankford, 1981) and the compressive strength g, can be written
in the following power law form,

.o g, (53)

where n is the strain rate hardening exponent. The strain rate hardening exponent # is
plotted in Fig. 6 as a function of the toughening exponent y for parameters used in Fig. 5.
It is clear that the strain rate hardening exponent n decreases monotonically with increasing
». For illustrative purposes, by making use of eqn (47), the axial stress versus axial strain
is plotted in Fig. 7 for strain rates of 500, 1000 and 2000 s '. It is evident that there is very
little or no degradation of the elastic moduli until failure and this is expected to be true for
most engineering ceramics. For all practical purposes, these materials can be assumed to
be linearly elastic up to failure in uniaxial compression.

4.3. Transition strain rate
A critical strain rate at which transition to strongly rate sensitive behavior occurs for
microcracking solids is proposed in terms of their material properties
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Fig. 6. Strain rate hardening exponent » as a function of the toughening parameter y for initial
microcrack density f, = 10" and coefficient of friction # = 0.6.
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Fig. 7. Axial stress versus axial strain at strain rates ¢ = 500, 1000 and 2000 s~' for initial microcrack
density f, = 1077, coefficient of friction n = 0.6 and toughening exponent y = 1.

by =0 X (54)

where ¢, is a characteristic speed and /; is the length of the material element under
consideration, ¢.g. specimen length in a split Hopkinson (Kolsky) pressure bar experiment.
[t has been noted that inertial effects become significant when the crack velocities reach
about 0.2 of the shear wave speed ¢,, which we choose to be ¢,. Lankford (1981) had
proposed an expression similar to eqn (54) with the radius of the specimen in place of the
specimen length /; and the shear wave speed ¢, replacing the critical velocity c4. For most
engineering ceramics E/a, is between 100 and 150 and c, is in the range 12001400 m s~ .
For a typical specimen length of 8 mm, the critical strain rate at which the transition occurs
is between 1000 and 1200 s~'. This appears to be consistent with most experimental
observations on uniaxial compressive behavior of ceramics using a split Hopkinson (Kol-
sky) pressure bar (Lankford, 1981 ; Subhash and Ravichandran, 1993).

4.4. Modeling uniaxial compressive behavior of aluminum nitride
Both quasi-static and high strain rate experiments have been performed recently on a
hot pressed aluminum nitride; see Subhash and Ravichandran (1993). The quasi-static
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experiments were conducted in the range 107°-10"? s~' using a materials testing system
(MTS), and the high strain rate experiments were performed in the range 250-2300 s~
using a split Hopkinson (pressure) bar. The material is relatively rate insensitive in the low
strain rate regime while at high strain rates (>1000 s™"), the material becomes strongly
rate sensitive. The length of the specimens that were used in the experiments was 7.62 mm.
The quasi-static compressive strength of aluminum nitride was determined to be around
2.81 GPa which will be taken to be g, for our modeling purposes. The transition strain rate
for the specimen is computed using eqn (54) which is 1450 s~ '. A fracture toughness value
K. of 2.7 MPa m'? is used for hot pressed aluminum nitride ; see Skeele et al. (1993). The
friction coefficients for dry contacting ceramics usually range from 0.45 to 0.75. The friction
coefficient () for aluminum nitride is assumed to be 0.6 and the initial flaw size (2¢) is
determined using eqn (8). In the present study 2¢ >~ 6 um which will be used throughout
our calculations. The flaw size appears to be reasonable considering that the grain size is
approximately 2-3 um for the material used in the investigation. The areal density of defects
/o is assumed to be 10~ which is typical for hot pressed ceramics.

The failure criterion in eqn (52) is utilized to evaluate the failure time 7. for each strain
rate with the following assumptions. The failure is assumed to be dominated by a small
number of flaws and the critical length for failure is taken to be half the length of the
specimen. We also assume v,, to be a third of the shear wave speed ¢, which appears to be
a reasonable value from the available experimental data for dynamically growing cracks in
ceramics ; see Deobald and Kobayashi (1992). For modeling the behavior of aluminum
nitride, we take v, = 2100 m s~ '. Since f, is known at various strain rates, we can now
compute ¢, for each strain rate and hence the compressive strength as a function of strain
rate. The predictions for y = 1 together with the available experimental data from uniaxial
compressive behavior of a hot pressed aluminum nitride (Subhash and Ravichandran,
1993) are shown in Fig. 8. The model predictions compare well with the experimental data
over a wide range of strain rates which suggests that our constitutive model together with
the fracture criteria developed in Section 4 could be used in studying high strain rate
behavior of brittle materials such as ceramics under compressive loading. An examination
of the model parameters suggests that the tensile cracks are propagating at velocities in
excess of 1000 m s~' which seems to be consistent with data available for propagating
cracks under compressive loads in ceramics ; see Winkler er al. (1989).

5. DISCUSSION AND CONCLUSIONS

The constitutive model developed for uniaxial constant strain rate loading has been
used successfully in Section 4 to explain the behavior of a hot pressed aluminum nitride

Oc 31 o4 —-
(GPa)
2
@  Experimental
j —  Predicted
14
0 T T T T T L A B S B B
6 5 4 -3 2 -1 0 1 2 3 4

log(&)

Fig. 8. Compressive strength versus strain rate for hot pressed aluminum nitride : solid line is the
analytical prediction and the solid circles represent split Hopkinson (Kolsky) bar experimental data.
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subjected to uniaxial compression. The model reveals that the dominant factors which
influence the rate sensitivity and hence the ultimate failure strength are (a) the relation
between the toughness K4 and the crack velocity v and (b) the time taken to reach the
critical stress intensity K. in the vicinity of the nucleation sites, or in other words the value
of the critical stress intensity factor which in turn is reflected in the quasi-static compressive
strength g, It appears from our model, in order for brittle materials to exhibit strong rate
sensitivity, that the K —v relationship should be a monotonically decreasing function as
shown in Fig. 4. Such a relationship has been observed in brittle materials such as glass
(Kobayashi er al., 1983) ; however, in ceramics, this issue needs to be clarified further ; see,
for example, Yang and Kobayashi (1990).

Several assumptions have been made in constructing the constitutive model. These
assumptions have been made primarily due to lack of sufficient experimental data for
ceramics regarding their dynamic fracture behavior. The most serious of them appears to
be the assumption that K|, is athermal and independent of loading rate. There have been
suggestions (Brockenbrough et af., 1988 ; Duffy et al., 1989 ; Suresh et al., 1990) that the
initiation values for Kj. under dynamic loading may be a factor of 1.27 higher than their
static value for ceramics such as ALO;. We have not made the distinction between static
and dynamic crack initiation stress intensity factors. If definitive data were available, we
could incorporate the rate dependence of the initiation value for the critical stress intensity
factor in our model. In our present study we have ignored the interaction effects between
cracks which appears to be reasonable for engineering ceramics where the initial flaw
density f; is very small, of the order of 10 ~*~10~°. However, if the interaction effects become
important one can accommodate them by modifying our sliding crack model to include a
collinear array of cracks rather than based on non-interacting microcracks. Recently,
Nemat-Nasser and Deng (1994) have considered such a scheme to understand the effect of
strain rate and flaw spacing on brittle failure in compression. In our modeling we have also
assumed the initial flaws to be two-dimensional slit cracks, however, one could extend the
present model to three-dimensional penny-shaped cracks following the suggestions made
by Ashby and Sammis (1990). A strong assumption has been made regarding the dynamic
energy release rate, which is assumed to be a monotonically decreasing function of the
crack velocity (see Fig. 4). This remains to be experimentally verified in ceramics by direct
measurements.

The model developed for biaxial compressive loading based on the sliding crack is
applicable to understanding the failure modes in brittle materials such as ceramics subjected
to transient compressive loading, such as in the event of an impact of a plate by an impactor.
This can be accomplished by transforming the local stress state for plane problems, i.e gy,
0. 013, Into their principal stress components, i.e. g, and g, in the transformed coordinate
system. The sliding cracks tend to grow in the direction of maximum compressive stress.
The results derived here are in general applicable as long as the maximum compressive
principal stress, say a,, is much greater in magnitude than the prevailing minimum principal
stress, ¢,. By considering the magnitude of loading and prevailing local strain rates, one
can adapt the results presented in Section 3 to obtain the results in the transformed
coordinate system. This could provide a powerful tool for modeling and predicting failure
of structures made of ceramics under impact loading conditions.
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APPENDIX

The constants p,, p,, 4. 42, g5 and g, in eqns (33 a-<) are functions of the friction coefficient  and are given
below:

PU= a0 120 200014307+ (1) sin 46, — 161 cos* 0,8’ sin 26} (A1)
Py = (—T)(”—F) {8 cos* 0, + 81 sin 20, + 1 sin 46, — 6y (r —26,)} (A2)
VNI — 20
e e TR} 2(n~20)(1 —7*) + (1 —5?) sin 40, + dn sin® 26, } (A3)
6 A -
g, = — Sno20) {cos* O, — 2+ 3y sin b, —ysin’ 6.} (Ad)
1 ; . .

g = — ———— {2n(n—26,) — 2 sin” 20, +n sin 46, } (A5)
(V2 (r—20,)
4(/2-1) 4

4= — G_?z,,fr{lfsmﬁ}, (A6)

where

0, = arctan(y). (A7)

A plot of the above functions as a function of the friction coefficient # is shown in Fig. Al.
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Fig. Al. The variation of coefficients p,, p,. ¢,, 4., ¢; and g, with the coefficient of friction #.



